6 research outputs found

    Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply

    No full text
    This paper analyzes the feasibility of the autotrophic production of vegetative cells of Haematococcus pluvialis under conditions resembling outdoors. The experimental design simulates in laboratory with artificial light an outdoors circadian cycle similar to solar illumination. The influence of the irradiance and nutrient concentration on the growth rate and carotenoids accumulation in batch cultures is studied. The cultures were not photoinhibited even under the maximum irradiance-level tested (2500 μE m-2 s -1). Growth was kept nutrient-limited by using nutrients concentration below the standard inorganic medium (10 mM nitrate). When no nutrient-limitation occurs, the growth rate and biomass productivity measured 0.57 day-1 and 0.28 g L-1 day-1, respectively, were similar to the maximum values reported, regardless of the nutritional regime: autotrophic, mixotrophic or heterotrophic. On the other hand, carotenogenesis was only observed under nutrient-limiting conditions when the medium strength was reduced to 0.2- or 0.3-fold of the standard medium. On the other hand, carotenogenesis ceased under severe nutrient deprivation (i.e. nutrient strength of 0.1-fold of the standard medium). The growth rate and the carotenoids accumulation rate were demonstrated to be a function of the average irradiance inside the culture, and of the nutrient content of the medium. A mathematical model for the observed behaviour is proposed. This model was adequate to fit all the experimental data obtained. The values determined for the characteristics parameters are in agreement with those found by other authors. Therefore, the proposed model can be a useful tool for the design and management of Haematococcus cultures, and could allow improving the yield of this production process. © 2005 Elsevier B.V. All rights reserved.Peer Reviewe

    Production of astaxanthin by Haematococcus pluvialis: Taking the one-step system outdoors

    No full text
    The feasibility of a one-step method for the continuous production of astaxanthin by the microalga Haematococcus pluvialis has been verified outdoors. To this end, influence of dilution rate, nitrate concentration in the feed medium, and irradiance on the performance of continuous cultures of H. pluvialis was firstly analyzed indoors in bubble column reactors under daylight cycles, and then outdoors, using a tubular photobioreactor. At the laboratory scale, the behavior of the cultures agreed with that previously recorded in continuous illumination experiences, and attested that the major factors determining biomass and astaxanthin productivity were average irradiance and specific nitrate supply. The rate of astaxanthin accumulation was proportional to the average irradiance inside the culture, provided that a nitrate limiting situation had been established. The accumulation of astaxanthin under daylight cycles was maximal for a specific nitrate input of 0.5 mmol/g day. The recorded performance has been modeled on the basis of previously developed equations, and the validity of the model checked under outdoor conditions. Productivity values for biomass and astaxanthin of 0.7 g/L day and 8.0 mg/L day respectively, were obtained in a pilot scale tubular photobioreactor operating under continuous conditions outdoors. The magnitude of the experimental values, which matched those simulated from the obtained model, demonstrate that astaxanthin can be efficiently produced outdoors in continuous mode through a precise dosage of the specific nitrate input, taking also into consideration the average irradiance inside the culturePeer reviewe

    Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content

    No full text
    Applied Microbiology and Biotechnology 74(5): 1112-1119 (2007)The influence of culture conditions on the quality of Haematococcus pluvialis biomass is assessed. Continuously grown cells have been characterised with respect to their astaxanthin, fatty acid content, and antioxidant activity and compared with those of non-growing haematocysts. Moderate limitation of nitrate availability (1.7 mM) under continuous growth conditions favoured the production of reddish palmelloid cells whose extracts possessed antioxidant activity equivalent to that of haematocyst extracts, despite the lower astaxanthin content (0.6%d.wt.), which is compensated by a higher fatty acid level (7.6%d.wt.). Green cells produced under nitrate saturation conditions (>4.7 mM) exhibit only 40% antioxidant activity than palmelloid. In addition, the major fatty acid present in palmelloid cells was oleic acid (40%f.a.), whereas, in both green cells and haematocysts, the main fatty acids were myristic, palmitic, and oleic acid (20–30%f.a. each). Biomass extracts were fractionated and analysed. The antioxidant capacity was a function of both the carotenoid and the fatty acid profiles, the antioxidant capacity of astaxanthin diesters fraction being 60% higher than astaxanthin monoesters fraction and twice than free astaxanthin. In such a way, the evaluation of the quality of H. pluvialis biomass must take into account both variables. When considering the production of H. pluvialis biomass for human consumption, special attention should be paid to the one-step continuous system approach for the generation of cells rich in both astaxanthin and fatty acids, as they have high antioxidant activity but without thick hard cell wall.Peer reviewe

    Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis

    No full text
    Continuous cultivation of Haematococcus pluvialis under moderate nitrogen limitation represents a straightforward strategy, alternative to the classical two-stage approach, for astaxanthin production by this microalga. Performance of the one-step system has now been validated for more than 40 combinations of dilution rate, nitrate concentration in the feed medium, and incident irradiance, steady state conditions being achieved and maintained in all instances. Specific nitrate input and average irradiance were decisive parameters in determining astaxanthin content of the biomass, as well as productivity of the system. The growth rate of the continuous photoautotrophic cultures was a hyperbolic function of average irradiance. As long as specific nitrate input was above the threshold value of 2.7 mmol/gday, cells performed green and astaxanthin was present at basal levels only. Below the threshold value, under moderate nitrogen limitation conditions, astaxanthin accumulated to reach cellular levels of up to 1.1% of the dry biomass. Increasing irradiance resulted in enhancement of astaxanthin accumulation when nitrogen input was limiting, but never under nitrogen sufficiency. Mean daily productivity values of 20.8 ± 2.8 mg astaxanthin/L day (1.9 ± 0.3 g dry biomass/L day) were consistently achieved for a specific nitrate input of about 0.8 mmol/gday and an average irradiance range of 77-110 μE/m2 s. Models relating growth rate and astaxanthin accumulation with both average irradiance and specific nitrate input fitted accurately experimental data. Simulations provided support to the contention of achieving efficient production of the carotenoid through convenient adjustment of the determining parameters, and yielded productivity estimates for the one-step system higher than 60 mg astaxanthin/L day. The demonstrated capabilities of this production system, as well as its product quality, made it a real alternative to the current two-stage system for the production of astaxanthin-rich biomass. © 2007 Wiley Periodicals, Inc.Peer Reviewe

    Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture

    No full text
    The performance of Haematococcus pluvialis in continuous photoautotrophic culture has been analyzed, especially from the viewpoint of astaxanthin production. To this end, chemostat cultures of Haematococcus pluvialis were carried out at constant light irradiance, 1,220 μE/m2 · s, and dilution rate, 0.9/d, but varying the nitrate concentration in the feed medium reaching the reactor, from 1.7 to 20.7 mM. Both growth and biomass composition were affected by the nitrate supply. With saturating nitrate, the biomass productivity was high, 1.2 g/L · d, but astaxanthin accumulation did not take place, the C/N ratio of the biomass being 5.7. Under moderate nitrate limitation, biomass productivity was decreased, as also did biomass concentration at steady state, whereas accumulation of astaxanthin developed and the C/N ratio of the biomass increased markedly. Astaxanthin accumulation took place in cells growing and dividing actively, and its extent was enhanced in response to the limitation in nitrate availability, with a recorded maximum for astaxanthin cellular level of 0.8% of dry biomass and of 5.6 mg/L · d for astaxanthin productivity. The viability of a significant continued generation of astaxanthin-rich H. pluvialis cells becomes thus demonstrated, as also does the continuous culture option as an alternative to current procedures for the production of astaxanthin using this microalga. The intensive variable controlling the behavior of the system has been identified as the specific nitrate input, and a mathematical model developed that links growth rate with both irradiance and specific nitrate input. Moreover, a second model for astaxanthin accumulation, also as a function of irradiance and specific nitrate input, was derived. The latter model takes into account that accumulation of astaxanthin is only partially linked to growth, being besides inhibited by excess nitrate. Simulations performed fit experimental data and emphasize the contention that astaxanthin can be efficiently produced under continuous mode by adjustment of the specific nitrate input, predicting even higher values for astaxanthin productivity. The developed models represent a powerful tool for management of such an astaxanthin-generating continuous process, and could allow the development of improved systems for the production of astaxanthin-rich Haematococcus cells. © 2005 Wiley Periodicals, Inc.Peer Reviewe

    Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors

    No full text
    The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 μE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0% d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5% d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0% d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0 mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2% d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 μm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.Peer reviewe
    corecore